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Abstract

We provide an efficient algorithm for calculating, at appropriately chosen points on the two-dimensional surface of the
unit sphere in R3, the values of functions that are specified by their spherical harmonic expansions (a procedure known as
the inverse spherical harmonic transform). We also provide an efficient algorithm for calculating the coefficients in the
spherical harmonic expansions of functions that are specified by their values at these appropriately chosen points (a pro-
cedure known as the forward spherical harmonic transform). The algorithms are numerically stable, and, if the number of
points in our standard tensor-product discretization of the surface of the sphere is proportional to l2, then the algorithms
have costs proportional to l2 lnðlÞ at any fixed precision of computations. Several numerical examples illustrate the per-
formance of the algorithms.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Over the past several decades, the fast Fourier transform (FFT) and its variants (see, for example [15]) have
had an enormous impact across the sciences. The FFT is an efficient algorithm for computing, for any positive
integer n and complex numbers b0; b1; . . . ; bn�2; bn�1, the complex numbers a0; a1; . . . ; an�2; an�1 defined by
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for k ¼ 0; 1; . . . ; n� 2; n� 1, and x0; x1; . . . ; xn�2; xn�1 are the real numbers defined by
xk ¼
2k � n

n
ð3Þ
for k ¼ 0; 1; . . . ; n� 2; n� 1. The FFT is efficient in the sense that there exists a reasonably small positive real
number C such that, for any positive integer n P 10, the FFT requires at most C n lnðnÞ floating-point oper-
ations to compute a0; a1; . . . ; an�2; an�1 in (1) from b0; b1; . . . ;bn�2; bn�1. In contrast, evaluating the sum in (1)
separately for every j ¼ 0; 1; . . . ; n� 2; n� 1 costs at least n2 operations in total.

It is desirable to have an analogue of the FFT for functions defined on the two-dimensional surface of the
unit sphere in R3, in the following sense. The spherical harmonic expansion of a bandlimited function f on the
surface of the sphere has the form
f ðh;uÞ ¼
X2l�1

k¼0

Xk

m¼�k

bm
k P jmjk ðcosðhÞÞeimu; ð4Þ
where ðh;uÞ are the standard spherical coordinates on the two-dimensional surface of the unit sphere in
R3; h 2 ð0; pÞ and u 2 ð0; 2pÞ, and P jmjk is the normalized associated Legendre function of degree k and order
jmj, defined on (�1,1) via the formula
P jmjk ðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k þ 1

2

ðk � jmjÞ!
ðk þ jmjÞ!

s ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p jmj d jmj

dxjmj
P kðxÞ; ð5Þ
where P k is the Legendre polynomial of degree k (see, for example, chapter 8 of [1]). (Please note that the
superscript m in bm

k denotes an index, rather than a power.) Obviously, the expansion (4) contains 4l2 terms.
The complexity of the function f determines l.

In many areas of scientific computing, particularly those using spectral methods for the numerical solution
of partial differential equations, we need to evaluate the coefficients bm

k in an expansion of the form (4) for a
function f given by a table of its values at a collection of appropriately chosen nodes on the two-dimensional
surface of the unit sphere. Conversely, given the coefficients bm

k in (4), we often need to evaluate f at a collec-
tion of points on the surface of the sphere. The former is known as the forward spherical harmonic transform,
and the latter is known as the inverse spherical harmonic transform. A standard discretization of the surface of
the sphere is the ‘‘tensor-product,” consisting of all pairs of the form ðhk;ujÞ, with cosðh0Þ; cosðh1Þ;
. . . ; cosðh2l�2Þ; cosðh2l�1Þ being the Gauss–Legendre quadrature nodes of degree 2l, that is,
�1 < cosðh0Þ < cosðh1Þ < � � � < cosðh2l�2Þ < cosðh2l�1Þ < 1 ð6Þ

and
P 0
2lðcosðhkÞÞ ¼ 0 ð7Þ
for k ¼ 0; 1; . . . ; 2l� 2; 2l� 1, and with u0;u1; . . . ;u4l�3;u4l�2 being equispaced on the interval ð0; 2pÞ, that is,
uj ¼
2p jþ 1

2

� �
4l� 1

ð8Þ
for j ¼ 0; 1; . . . ; 4l� 3; 4l� 2. This leads immediately to numerical schemes for both the forward and inverse
spherical harmonic transforms with costs proportional to l3.

Indeed, given a function f defined on the two-dimensional surface of the unit sphere by (4), we can rewrite
(4) in the form
f ðh;uÞ ¼
X2l�1

m¼�2lþ1

eimu
X2l�1

k¼jmj
bm

k P jmjk ðcosðhÞÞ: ð9Þ
For a fixed value of h, each of the sums over k in (9) contains no more than 2l terms, and there are 4l� 1 such
sums (one for each value of m); since the inverse spherical harmonic transform involves 2l values
h0; h1; . . . ; h2l�2; h2l�1, the cost of evaluating all sums over k in (9) is proportional to l3. Once all sums over
k have been evaluated, each sum over m may be evaluated for a cost proportional to l (since each of them
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contains 4l� 1 terms), and there are ð2lÞð4l� 1Þ such sums to be evaluated (one for each pair ðhk;ujÞ), lead-
ing to costs proportional to l3 for the evaluation of all sums over m in (9). The cost of the evaluation of the
whole inverse spherical harmonic transform (in the form (9)) is the sum of the costs for the sums over k and the
sums over m, and is also proportional to l3; a virtually identical calculation shows that the cost of evaluating
of the forward spherical harmonic transform is also proportional to l3.

A trivial modification of the scheme described in the preceding paragraph uses the FFT to evaluate the
sums over m in (9), roughly halving the operation count of the whole procedure. Several other careful consid-
erations (see, for example, [2,20]) are able to reduce the costs by 50% or so, but there is no simple trick for
reducing the costs of the whole spherical harmonic transform (either forward or inverse) below l3. The present
paper presents algorithms for both forward and inverse spherical harmonic transforms with costs proportional
to l2 lnðlÞ at any fixed precision of computations. Thus, our scheme provides an analogue of the FFT for func-
tions defined on the surface of the sphere.

Specifically, the present article provides an algorithm for evaluating a sum over k in (9) at
h ¼ h0; h1; . . . ; h2l�2; h2l�1, given the coefficients bm

jmj, bm
jmjþ1; . . . ; bm

2l�2; b
m
2l�1, for a fixed m, with costs propor-

tional to l lnðlÞ. Moreover, the present paper provides an algorithm for the inverse procedure of determining
the coefficients bm

jmj; b
m
jmjþ1; . . . ; bm

2l�2; b
m
2l�1 from the values of a sum over k in (9) at h ¼ h0; h1; . . . ; h2l�2; h2l�1,

with costs proportional to l lnðlÞ. FFTs or fast discrete sine and cosine transforms can be used to handle
the sums over m in (9) efficiently.

The similarity between the transforms of the present paper and the discrete Fourier transform in (1) is per-
haps most transparent in the following (equivalent) formulation. Given any integers l and m with jmj 6 2l� 1
and real numbers bm

jmj; b
m
jmjþ1; . . . ; bm

2l�2; b
m
2l�1, one of the algorithms of the present article computes rapidly the

real numbers am
�l; a

m
1�l; . . . ; am

l�2; a
m
l�1 defined by
am
j ¼

X2l�1

k¼jmj
bm

k f m
k ðzjÞ ð10Þ
for j ¼ �l; 1� l; . . . ; l� 2; l� 1, where f m
jmj; f

m
jmjþ1; . . . ; f m

2l�2; f
m
2l�1 are the functions defined on (�1,1) by
f m
k ðxÞ ¼ P jmjk ðxÞ ð11Þ
for k ¼ jmj; jmj þ 1; . . . ; 2l� 2; 2l� 1, and z�l; z1�l; . . . ; zl�2; zl�1 are the real numbers defined by
zk ¼ cosðhkþlÞ ð12Þ

for k ¼ �l; 1� l; . . . ; l� 2; l� 1, where hkþl is from (7). (Incidentally, it follows from (12) that
zk ¼ �z�k�1 ð13Þ

for k ¼ �l; 1� l; . . . ; l� 2; l� 1.) The present paper also provides an algorithm for computing rapidly
bm
jmj; b

m
jmjþ1; . . . ; bm

2l�2; b
m
2l�1, given am

�l; a
m
1�l; . . . ; am

l�2; a
m
l�1.

A number of publications construct algorithms for computing fast spherical harmonic transforms. One
approach yields algorithms which are exact in exact arithmetic, but unstable in floating-point arithmetic;
[9,8,11] elucidate this approach, and the ongoing efforts to stabilize such algorithms. Several other approaches
yield numerically stable algorithms, performing calculations to an arbitrary but fixed precision. [13] provides a
procedure whose cost is proportional to l5=2 lnðlÞ floating-point operations at any fixed precision, for comput-
ing either the forward or the inverse spherical harmonic transform. [13] also proposes an algorithm whose cost
is conjectured to be proportional to l2ðlnðlÞÞ2 at any fixed precision; [13] provides elements of a proof of this
conjecture, but the numerical results of [13] do not unequivocally support it. As in the present paper, [17,18,19]
construct algorithms whose cost is proportional to l2 lnðlÞ; some work remains in implementing the scheme of
[17,18,19] for large values of l, especially in making the requisite precomputations tractable, while guarantee-
ing numerical stability. Finally, the method of [14] should apply to spherical harmonic transforms, and we are
accumulating numerical evidence to that effect.

The present paper utilizes techniques based on recurrence relations, techniques that are substantially more
efficient than the similar ones of the predecessor [16] to the present article. We gave an overview of these tech-
niques in [24]; the present paper gives details regarding their application to computing spherical harmonic
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transforms rapidly. We should point out that [10] provides an alternative to the use of fast spherical harmonic
transforms that is suitable for certain applications.

Large-scale spherical harmonic transforms such as those accelerated by the present article are probably
most commonly used today in numerical weather simulations and other geophysical computations. For
detailed information on the numerical use of spherical harmonic transforms, we refer the reader to [22,21,20].

The present paper has the following structure: Section 2 summarizes a number of facts from numerical and
mathematical analysis, used in Section 3. Section 3 constructs fast algorithms. Section 4 describes the results of
several numerical tests of the algorithms of Section 3. The reader is encouraged to begin with Sections 3 and 4,
referring back to the relevant portions of Section 2 as they are referenced.

Throughout the present article, we denote the normalized associated Legendre function of degree k and
order m by P m

k , as in (5).

2. Preliminaries

In this section, we summarize certain widely known facts from numerical and mathematical analysis, used
in Section 3. Section 2.1 summarizes properties of the fast multipole method. Section 2.2 describes certain
properties of divide-and-conquer methods for diagonalizing self-adjoint tridiagonal matrices and applying
their matrices of normalized eigenvectors. Section 2.3 summarizes basic properties of normalized associated
Legendre functions. Section 2.4 provides tools for the analysis and synthesis of linear combinations of normal-
ized associated Legendre functions. Section 2.5 provides tools for the interpolation of linear combinations of
normalized associated Legendre functions. Section 2.6 describes the Prüfer transformation for classical
Sturm–Liouville problems (concerning the eigenfunctions of self-adjoint second-order linear differential
operators).

2.1. The fast multipole method

This subsection summarizes properties of fast algorithms developed in [12,26] for applying scaled Cauchy
matrices.

For any positive integers l and n, and real numbers u0; u1; . . . ; un�2; un�1, v0; v1; . . . ; vl�2; vl�1,
x0; x1; . . . ; xn�2; xn�1, and y0; y1; . . . ; yl�2; yl�1, we define
tj ¼
Xn�1

k¼0

vjuk

yj � xk
ð14Þ
for j ¼ 0; 1; . . . ; l� 2; l� 1.
As described in [12,26], there exist an algorithm and a positive real number C such that, for any positive

integers l and n, real numbers u0; u1; . . . ; un�2; un�1, v0; v1; . . . ; vl�2; vl�1, x0; x1; . . . ; xn�2; xn�1, y0; y1; . . . ;
yl�2; yl�1, and positive real number e 6 1=10, the algorithm computes t0; t1; . . . ; tl�2; tl�1 defined in (14) with
a precision of computations e, using at most
Cðlþ nÞðlnð1=eÞÞ2 ð15Þ

floating-point operations.

Remark 2.1. In practice, the algorithms described in [26] require only a small fraction of the memory required
by the algorithm described in [12]. Also, the constant C in (15) is effectively smallest for the algorithm
described in [12] only when it is used with fixed choices of xk and yj in (14) for many different choices of uk and
vj. When the numbers xk and yj are fairly uniformly distributed, the ‘‘simple exponential-expansion FMM”

algorithm described in Section 4 of [26] is often the most efficient of all the algorithms described in [12,26].
2.2. Divide-and-conquer spectral methods

This subsection summarizes properties of fast algorithms introduced in [6,7] for spectral representations of
tridiagonal real self-adjoint matrices. Specifically, there exists an algorithm such that, for any tridiagonal real
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self-adjoint matrix T, (firstly) the algorithm computes the eigenvalues of T, (secondly) the algorithm computes
any eigenvector of T, (thirdly) the algorithm applies a square matrix U consisting of normalized eigenvectors
of T to any arbitrary column vector, and (fourthly) the algorithm applies U T to any arbitrary column vector,
all using a number of floating-point operations proportional to nðlnðnÞÞðlnð1=eÞÞ3, where n is the positive inte-
ger for which T and U are n� n, and e is the precision of computations. The following is a more precise
formulation.

For any positive integer n, self-adjoint n� n matrix T, and real n� 1 column vector v, we define kT k to be
the largest of the absolute values of the eigenvalues of T, dT to be the minimum value of the distance jk� lj
between any two distinct eigenvalues k and l of T, and
kvk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn�1

k¼0

ðvkÞ2
vuut ; ð16Þ
where v0; v1; . . . ; vn�2; vn�1 are the entries of v; we say that v is normalized to mean that kvk ¼ 1. As originated in
[7], there exist an algorithm and a positive real number C such that, for any positive real number e 6 1=10,
positive integer n P 10, tridiagonal real self-adjoint n� n matrix T with n distinct eigenvalues, real unitary
n� n matrix U whose columns are n normalized eigenvectors of T, and real n� 1 column vector v,

1. the algorithm computes to within absolute precision kT k e the n eigenvalues of T, using at most
CnðlnðnÞÞðlnð1=eÞÞ3 ð17Þ

floating-point operations,

2. the algorithm computes to within absolute precision kT kkvke=dT the n entries of the matrix–vector product
Uv, using at most
CnðlnðnÞÞðlnð1=eÞÞ3 ð18Þ

operations,

3. the algorithm computes to within absolute precision kT kkvke=dT the n entries of the matrix–vector product
UT v, using at most
CnðlnðnÞÞðlnð1=eÞÞ3 ð19Þ

operations, and,

4. after the algorithm performs some precomputations which are particular to T at a cost of at most
CnðlnðnÞÞðlnð1=eÞÞ3 ð20Þ

operations, the algorithm computes to within absolute precision kTke=dT the kn entries of any k user-speci-
fied normalized eigenvectors of T, using at most
C k nðlnð1=eÞÞ2 ð21Þ

operations, for any positive integer k.

Remark 2.2. We omitted distracting factors of very small powers of n in the precisions mentioned in the
present subsection.

Remark 2.3. In the second item of the present subsection, the algorithm in fact requires at most
C k nðlnðnÞÞðlnð1=eÞÞ2 ð22Þ

operations in order to compute the matrix–vector products Uv0, Uv1; . . . ;Uvk�2;Uvk�1, for any positive integer
k, and real n� 1 column vectors v0, v1; . . . ; vk�2; vk�1, after the algorithm performs some precomputations
which are particular to T at a cost of at most
C nðlnðnÞÞðlnð1=eÞÞ3 ð23Þ

operations. Moreover, we can improve the precisions to which the algorithm calculates Uv0;Uv1; . . . ;
Uvk�2;Uvk�1, by performing more expensive precomputations (using higher-precision floating-point arithmetic
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or precomputation algorithms whose costs are not proportional to n lnðnÞ, for example). For the numerical
results reported in Section 4, we improve the precisions thus, by performing precomputations in extended-pre-
cision arithmetic. Similar considerations apply to the third item of the present subsection.

Remark 2.4. There exist similar algorithms when the eigenvalues of T are not all distinct.

Remark 2.5. The algorithm of the present subsection utilizes the fast multipole method (described, for exam-
ple, in Section 2.1).
2.3. Basic properties of normalized associated Legendre functions

This subsection discusses several classical facts concerning normalized associated Legendre functions. All of
these facts follow trivially from results contained, for example, in [1] or [23].

The following lemma states that the normalized associated Legendre functions of order m are orthonormal
on (�1,1).

Lemma 2.6. Suppose that m is a nonnegative integer.

Then,
Z 1

�1

dx P m
k ðxÞP m

l ðxÞ ¼
1; k ¼ l

0; k 6¼ l

�
ð24Þ
for k; l ¼ m;mþ 1;mþ 2; . . ..

The following lemma states that the normalized associated Legendre functions satisfy a certain self-adjoint
second-order linear (Sturm–Liouville) differential equation.

Lemma 2.7. Suppose that m is a nonnegative integer.

Then,
� d

dx
ð1� x2Þ d

dx
P m

l ðxÞ
� �

þ m2

1� x2
� lðlþ 1Þ

� �
P m

l ðxÞ ¼ 0 ð25Þ
for any x 2 ð�1; 1Þ, and l ¼ m;mþ 1;mþ 2; . . ..

The following lemma states that the normalized associated Legendre function of order m and degree mþ 2n
has exactly n zeros inside (0,1), and, moreover, that the normalized associated Legendre function of order m

and degree mþ 2nþ 1 also has exactly n zeros inside (0, 1).

Lemma 2.8. Suppose that m and n are nonnegative integers with n > 0.

Then, there exist precisely n real numbers x0; x1; . . . ; xn�2; xn�1 such that
0 < x0 < x1 < � � � < xn�2 < xn�1 < 1 ð26Þ

and
P m
mþ2nðxkÞ ¼ 0 ð27Þ
for k ¼ 0; 1; . . . ; n� 2; n� 1.
Moreover, there exist precisely n real numbers y0; y1; . . . ; yn�2; yn�1 such that
0 < y0 < y1 < � � � < yn�2 < yn�1 < 1 ð28Þ

and
P m
mþ2nþ1ðykÞ ¼ 0 ð29Þ
for k ¼ 0; 1; . . . ; n� 2; n� 1.

The case m = 0 of the preceding lemma is particularly important in applications; the following lemma
restates part of the preceding lemma for the case m = 0.
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Lemma 2.9. Suppose that l is a positive integer.

Then, there exist precisely l real numbers z0; z1; . . . ; zl�2; zl�1 such that
0 < z0 < z1 < � � � < zl�2 < zl�1 < 1 ð30Þ

and
P 0
2lðzkÞ ¼ 0 ð31Þ
for k ¼ 0; 1; . . . ; l� 2; l� 1.

Suppose that m and n are nonnegative integers with n > 0. Then, we define real numbers
q0; q1; . . . ; qn�2; qn�1, r0; r1; . . . ;rn�2; rn�1, and rn via the formulae
qk ¼
2ð2mþ 4nþ 1Þ

ð1� x2
kÞ d

dx P m
mþ2nðxkÞ

� �2
ð32Þ
for k ¼ 0; 1; . . . ; n� 2; n� 1, where x0; x1; . . . ; xn�2; xn�1 are from (27),
rk ¼
2ð2mþ 4nþ 3Þ

ð1� y2
kÞ d

dx P m
mþ2nþ1ðykÞ

� �2
ð33Þ
for k ¼ 0; 1; . . . ; n� 2; n� 1, where y0; y1; . . . ; yn�2; yn�1 are from (29), and
rn ¼
2mþ 4nþ 3
d
dx P m

mþ2nþ1ð0Þ
� �2

: ð34Þ
The following lemma describes what are known as Gauss–Jacobi quadrature formulae corresponding to asso-
ciated Legendre functions.

Lemma 2.10. Suppose that m and n are nonnegative integers with n > 0.

Then,
Z 1

�1

dx ð1� x2ÞmpðxÞ ¼
Xn�1

k¼0

qkpðxkÞ ð35Þ
for any even polynomial p of degree at most 4n� 2, where x0; x1; . . . ; xn�2; xn�1 are from (27), and

q0; q1; . . . ; qn�2; qn�1 are defined in (32).

Furthermore,
Z 1

�1

dx ð1� x2ÞmpðxÞ ¼ rnpð0Þ þ
Xn�1

k¼0

rkpðykÞ ð36Þ
for any even polynomial p of degree at most 4n, where y0; y1; . . . ; yn�2; yn�1 are from (29), and r0; r1; . . . ; rn�1;rn

are defined in (33) and (34).

Suppose that l is a positive integer. Then, we define real numbers w0;w1; . . . ;wl�2;wl�1 via the formula
wk ¼
2ð4lþ 1Þ

ð1� z2
kÞ d

dx P 0
2lðzkÞ

� �2
ð37Þ
for k ¼ 0; 1; . . . ; l� 2; l� 1, where z0; z1; . . . ; zl�2; zl�1 are from (31).
The case m ¼ 0 of the preceding lemma is particularly important in applications; the following lemma

restates part of the preceding lemma for the case m ¼ 0.

Lemma 2.11. Suppose that l is a positive integer.

Then,
Z 1

�1

dx pðxÞ ¼
Xl�1

k¼0

wkpðzkÞ ð38Þ
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for any even polynomial p of degree at most 4l� 2, where z0; z1; . . . ; zl�2; zl�1 are from (31), and

w0;w1; . . . ;wl�2;wl�1 are defined in (37).

Suppose that m is a nonnegative integer. Then, we define real numbers cm; cmþ1; cmþ2; . . . and
dm; dmþ1; dmþ2; . . . via the formulae
cl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl� mþ 1Þðl� mþ 2Þðlþ mþ 1Þðlþ mþ 2Þ

ð2lþ 1Þð2lþ 3Þ2ð2lþ 5Þ

s
ð39Þ
for l ¼ m;mþ 1;mþ 2; . . ., and
dl ¼
2lðlþ 1Þ � 2m2 � 1

ð2l� 1Þð2lþ 3Þ ð40Þ
for l ¼ m;mþ 1;mþ 2; . . ..
The following lemma states that the normalized associated Legendre functions of order m satisfy a certain

three-term recurrence relation.

Lemma 2.12. Suppose that m is a nonnegative integer.

Then,
x2P m
l ðxÞ ¼ dlP m

l ðxÞ þ clP m
lþ2ðxÞ ð41Þ
for any x 2 ð�1; 1Þ, and l ¼ m or l ¼ mþ 1, and
x2P m
l ðxÞ ¼ cl�2P m

l�2ðxÞ þ dlP m
l ðxÞ þ clP m

lþ2ðxÞ ð42Þ
for any x 2 ð�1; 1Þ, and l ¼ mþ 2;mþ 3;mþ 4; . . ., where cm; cmþ1; cmþ2; . . . are defined in (39), and

dm; dmþ1; dmþ2; . . . are defined in (40).
2.4. Analysis and synthesis of linear combinations of normalized associated Legendre functions

This subsection provides tools for the analysis and synthesis of linear combinations of normalized associ-
ated Legendre functions via the theory of tridiagonal matrices. The methods of the present subsection have
been in wide use for numerical purposes at least since [5] appeared.

Suppose that m and n are nonnegative integers with n > 0. We define S to be the tridiagonal real self-adjoint
n� n matrix with the entry
Sj;k ¼

cmþ2j�2; k ¼ j� 1

dmþ2j; k ¼ j

cmþ2j; k ¼ jþ 1

0; otherwise ðwhen k < j� 1 or k > jþ 1Þ

8>>><
>>>:

ð43Þ
for j; k ¼ 0; 1; . . . ; n� 2; n� 1, where cm; cmþ2; . . . ; cmþ2n�4; cmþ2n�2 and dm; dmþ2; . . . ; dmþ2n�4; dmþ2n�2 are defined
in (39) and (40). We define T to be the tridiagonal real self-adjoint n� n matrix with the entry
T j;k ¼

cmþ2j�1; k ¼ j� 1

dmþ2jþ1; k ¼ j

cmþ2jþ1; k ¼ jþ 1

0; otherwise ðwhen k < j� 1 or k > jþ 1Þ

8>>><
>>>:

ð44Þ
for j; k ¼ 0; 1; . . . ; n� 2; n� 1, where cmþ1; cmþ3; . . . ; cmþ2n�3; cmþ2n�1 and dmþ1; dmþ3; . . . ; dmþ2n�3; dmþ2n�1 are de-
fined in (39) and (40). We define U to be the real n� n matrix with the entry
Uj;k ¼
P m

mþ2jðxkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn�1
i¼0 P m

mþ2iðxkÞ
� �2

q ð45Þ
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for j; k ¼ 0; 1; . . . ; n� 2; n� 1, where x0; x1; . . . ; xn�2; xn�1 are from (27). We define V to be the real n� n matrix
with the entry
V j;k ¼
P m

mþ2jþ1ðykÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn�1
i¼0 P m

mþ2iþ1ðykÞ
� �2

q ð46Þ
for j; k ¼ 0; 1; . . . ; n� 2; n� 1, where y0; y1; . . . ; yn�2; yn�1 are from (29). We define K to be the diagonal real
n� n matrix with the entry
Kj;k ¼
ðxjÞ2; k ¼ j

0; k 6¼ j

(
ð47Þ
for j; k ¼ 0; 1; . . . ; n� 2; n� 1, where x0; x1; . . . ; xn�2; xn�1 are from (27). We define C to be the diagonal real
n� n matrix with the entry
Cj;k ¼
ðyjÞ

2
; k ¼ j

0; k 6¼ j

(
ð48Þ
for j; k ¼ 0; 1; . . . ; n� 2; n� 1, where y0; y1; . . . ; yn�2; yn�1 are from (29). We define A to be the diagonal real
n� n matrix with the entry
Aj;k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn�1

i¼0

P m
mþ2iðxjÞ

� �2

s
; k ¼ j

0; k 6¼ j

8><
>: ð49Þ
for j; k ¼ 0; 1; . . . ; n� 2; n� 1, where x0; x1; . . . ; xn�2; xn�1 are from (27). We define B to be the diagonal real
n� n matrix with the entry
Bj;k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn�1

i¼0

P m
mþ2iþ1ðyjÞ

� �2

s
; k ¼ j

0; k 6¼ j

8><
>: ð50Þ
for j; k ¼ 0; 1; . . . ; n� 2; n� 1, where y0; y1; . . . ; yn�2; yn�1 are from (29).
The following lemma states that U is a matrix of normalized eigenvectors of the tridiagonal real self-adjoint

matrix S, and that K is a diagonal matrix whose diagonal entries are the eigenvalues of S (which, according to
(26), are distinct). The lemma also states, similarly, that V is a matrix of normalized eigenvectors of the tri-
diagonal real self-adjoint matrix T, and that C is a diagonal matrix whose diagonal entries are the eigenvalues
of T (which, according to (28), are distinct).

Lemma 2.13. Suppose that m and n are nonnegative integers with n > 0.
Then,
U TS U ¼ K; ð51Þ

where S is defined in (43), U is defined in (45), and K is defined in (47). Moreover, U is real and unitary.

Furthermore,
V TT V ¼ C; ð52Þ

where T is defined in (44), V is defined in (46), and C is defined in (48). Moreover, V is real and unitary.

Proof. Combining (41), (42), and (27) yields that
S U ¼ U K: ð53Þ

Combining (53), (45), (47), and (26) yields that U is a real matrix of normalized eigenvectors of S, with distinct
corresponding eigenvalues. Therefore, since eigenvectors corresponding to distinct eigenvalues of a real self-
adjoint matrix are orthogonal, U is orthogonal. Applying U T from the left to both sides of (53) yields (51). The
remaining statements of the lemma follow similarly. h



M. Tygert / Journal of Computational Physics 227 (2008) 4260–4279 4269
The following lemma expresses in matrix notation the analysis and synthesis of linear combinations of nor-
malized associated Legendre functions.

Lemma 2.14. Suppose that m and n are nonnegative integers with n > 0, and a, b, l, and m are real n� 1 column

vectors, such that a has the entry
aj ¼
Xn�1

k¼0

bkP m
mþ2kðxjÞ ð54Þ
for j ¼ 0; 1; . . . ; n� 2; n� 1, where x0; x1; . . . ; xn�2; xn�1 are from (27), and l has the entry
lj ¼
Xn�1

k¼0

mkP m
mþ2kþ1ðyjÞ ð55Þ
for j ¼ 0; 1; . . . ; n� 2; n� 1, where y0; y1; . . . ; yn�2; yn�1 are from (29).

Then,
a ¼ AU Tb ð56Þ

and
b ¼ U A�1a; ð57Þ

where U is defined in (45), A is defined in (49), and AU Tb and U A�1a are matrix–matrix–vector products.

Furthermore,
l ¼ B V Tm ð58Þ

and
m ¼ V B�1l; ð59Þ
where V is defined in (46), B is defined in (50), and B V Tm and V B�1l are matrix–matrix–vector products.

Proof. Combining (45) and (49) yields (56). According to Lemma 2.13, U is real and unitary. Therefore,
applying the product U A�1 from the left to both sides of (56) yields (57). The remaining statements of the
lemma follow similarly. h
2.5. Interpolation of linear combinations of normalized associated Legendre functions

This subsection provides tools for the interpolation of linear combinations of normalized associated Legen-
dre functions. The methods of the present subsection are taken from [10,25].

The following lemma provides what is known as a Christoffel–Darboux identity for the normalized asso-
ciated Legendre functions.

Lemma 2.15. Suppose that m and n are nonnegative integers with n > 0.

Then,
Xn�1

k¼0

P m
mþ2kðxÞP m

mþ2kðyÞ ¼
cmþ2n�2

x2 � y2
P m

mþ2nðxÞP m
mþ2n�2ðyÞ � P m

mþ2n�2ðxÞP m
mþ2nðyÞ

� �
ð60Þ
for any x; y 2 ð�1; 1Þ such that x 6¼ y, where cmþ2n�2 is defined in (39).

Furthermore,
Xn�1

k¼0

P m
mþ2kþ1ðxÞP m

mþ2kþ1ðyÞ ¼
cmþ2n�1

x2 � y2
P m

mþ2nþ1ðxÞP m
mþ2n�1ðyÞ � P m

mþ2n�1ðxÞP m
mþ2nþ1ðyÞ

� �
ð61Þ
for any x; y 2 ð�1; 1Þ such that x 6¼ y, where cmþ2n�1 is defined in (39).
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Proof. Combining (41) and (42) yields that
Xn�1

k¼0

x2P m
mþ2kðxÞ

� �
P m

mþ2kðyÞ �
Xn�1

k¼0

P m
mþ2kðxÞ y2 P m

mþ2kðyÞ
� �

¼ cmþ2n�2 P m
mþ2nðxÞP m

mþ2n�2ðyÞ � P m
mþ2n�2ðxÞP m

mþ2nðyÞ
� �

: ð62Þ
Dividing both sides of (62) by x2 � y2 yields (60). The remainder of the lemma follows similarly. h

The following lemma provides a formula which interpolates an even linear combination of n normalized
associated Legendre functions of order m from its values at the positive zeros of P m

mþ2n to its values at arbitrary
points in (�1,1). Furthermore, the lemma provides a formula which interpolates an odd linear combination of
n normalized associated Legendre functions of order m from its values at the positive zeros of P m

mþ2nþ1 to its
values at arbitrary points in (�1,1).

Lemma 2.16. Suppose that m and n are nonnegative integers with n > 0. Suppose further that

b0; b1; . . . ; bn�2; bn�1 and m0; m1; . . . ; mn�2; mn�1 are real numbers, and f and g are the functions defined on

(�1,1) via the formulae
f ðyÞ ¼
Xn�1

k¼0

bkP m
mþ2kðyÞ ð63Þ
and
gðxÞ ¼
Xn�1

k¼0

mkP m
mþ2kþ1ðxÞ: ð64Þ
Then,
f ðyÞ ¼ cmþ2n�2P m
mþ2nðyÞ

Xn�1

k¼0

1

y2 � x2
k

qkP m
mþ2n�2ðxkÞf ðxkÞ ð65Þ
for any y 2 ð�1; 1Þ such that y 6¼ x0; y 6¼ x1; . . . ; y 6¼ xn�2; y 6¼ xn�1, where cmþ2n�2 is defined in (39),

x0; x1; . . . ; xn�2; xn�1 are from (27), and q0; q1; . . . ; qn�2, qn�1 are defined in (32).

Furthermore,
gðxÞ ¼ cmþ2n�1P m
mþ2nþ1ðxÞ

Xn�1

k¼0

1

x2 � y2
k

rkP m
mþ2n�1ðykÞgðykÞ ð66Þ
for any x 2 ð�1; 1Þ such that x 6¼ y0; x 6¼ y1; . . . ; x 6¼ yn�2; x 6¼ yn�1, where cmþ2n�1 is defined in (39),

y0; y1; . . . ; yn�2; yn�1 are from (29), and r0; r1; . . . ; rn�2; rn�1 are defined in (33).

Proof. Combining (63) and (24) yields that
Xn�1

k¼0

Z 1

�1

dx f ðxÞP m
mþ2kðxÞP m

mþ2kðyÞ ¼ f ðyÞ ð67Þ
for any y 2 ð�1; 1Þ. Applying (35) to the integral in the left-hand side of (67) – as permitted by (63) and (5) –
yields that
f ðyÞ ¼
Xn�1

k¼0

Xn�1

j¼0

qjf ðxjÞP m
mþ2kðxjÞP m

mþ2kðyÞ ð68Þ
for any y 2 ð�1; 1Þ. Combining (68), (60), and (27) yields (65). The remainder of the lemma follows similarly,
using in addition the fact that P m

mþ2n�1ð0Þ ¼ 0 ¼ P m
mþ2nþ1ð0Þ (after all, P m

mþ2n�1 and P m
mþ2nþ1 are odd due to

(5)). h
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The following lemma provides a formula which interpolates an even linear combination of n normalized
associated Legendre functions of order m from its values at the positive zeros of P 0

2l to its values at the positive
zeros of P m

mþ2n. Here, l is an integer such that mþ 2n 6 2l. Furthermore, the lemma provides a formula which
interpolates an odd linear combination of n normalized associated Legendre functions of order m from its val-
ues at the positive zeros of P 0

2l to its values at the positive zeros of P m
mþ2nþ1.

Lemma 2.17. Suppose that l, m, and n are nonnegative integers, such that n > 0 and mþ 2n 6 2l. Suppose

further that b0; b1; . . . ; bn�2; bn�1 and m0; m1; . . . ; mn�2; mn�1 are real numbers, and f and g are the functions defined

on ð�1; 1Þ via the formulae
f ðxÞ ¼
Xn�1

k¼0

bkP m
mþ2kðxÞ ð69Þ
and
gðyÞ ¼
Xn�1

k¼0

mkP m
mþ2kþ1ðyÞ: ð70Þ
Then (unless n ¼ l and x0 ¼ z0; x1 ¼ z1; . . . ; xl�2 ¼ zl�2; xl�1 ¼ zl�1),
f ðxjÞ ¼ cmþ2n�2P m
mþ2n�2ðxjÞ

Xl�1

k¼0

1

z2
k � x2

j
wkP m

mþ2nðzkÞf ðzkÞ ð71Þ
for j ¼ 0; 1; . . . ; n� 2; n� 1, where cmþ2n�2 is defined in (39), x0; x1; . . . ; xn�2; xn�1 are from (27),

z0; z1; . . . ; zl�2; zl�1 are from (31), and w0;w1; . . . ;wl�2;wl�1 are defined in (37).

Furthermore,
gðyjÞ ¼ cmþ2n�1P m
mþ2n�1ðyjÞ

Xl�1

k¼0

1

z2
k � y2

j
wkP m

mþ2nþ1ðzkÞgðzkÞ ð72Þ
for j ¼ 0; 1; . . . ; n� 2; n� 1, where cmþ2n�1 is defined in (39), y0; y1; . . . ; yn�2; yn�1 are from (29),

z0; z1; . . . ; zl�2; zl�1 are from (31), and w0;w1; . . . ;wl�2;wl�1 are defined in (37).

Proof. Combining (69) and (24) yields that
Xn�1

k¼0

Z 1

�1

dy f ðyÞP m
mþ2kðxÞP m

mþ2kðyÞ ¼ f ðxÞ ð73Þ
for any x 2 ð�1; 1Þ. Applying (38) to the integral in the left-hand side of (73) – as permitted by (69) and (5) –
yields that
f ðxÞ ¼
Xn�1

k¼0

Xl�1

j¼0

wjf ðzjÞP m
mþ2kðxÞP m

mþ2kðzjÞ ð74Þ
for any x 2 ð�1; 1Þ. Combining (74), (60), and (27) yields (71). The remainder of the lemma follows
similarly. h
2.6. The Prüfer transformation

This subsection describes a certain reformulation of classical Sturm–Liouville problems (those concerning
the eigenfunctions of self-adjoint second-order linear differential operators). The methods of the present sub-
section are taken from [3].

Straightforward calculations yield the following lemma, reformulating a certain self-adjoint second-order
(Sturm–Liouville) differential equation as a pair of coupled first-order differential equations. This reformula-
tion is classically known as the Prüfer transformation (see, for example [3]).
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Lemma 2.18. Suppose that a and b are real numbers with a < b, and f, p, q, r, and h are functions of x 2 ða; bÞ,
such that f is twice differentiable, p is differentiable, pðxÞ > 0; qðxÞ > 0,
d

dx
pðxÞ d

dx
f ðxÞ

� �
þ qðxÞf ðxÞ ¼ 0; ð75Þ

rðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðxÞ

p d

dx
f ðxÞ

� �2

þ
ffiffiffiffiffiffiffiffiffi
qðxÞ

p
f ðxÞ

� 	2

s
; ð76Þ
and
hðxÞ ¼ tan�1

ffiffiffiffiffiffiffiffiffi
pðxÞ

p
d
dx f ðxÞffiffiffiffiffiffiffiffiffi

qðxÞ
p

f ðxÞ

 !
ð77Þ
for any x 2 ða; bÞ.
Then, for any x 2 ða; bÞ, f ðxÞ ¼ 0 if and only if
hðxÞ ¼ p
2
þ kp ð78Þ
for some integer k.

Furthermore,
d

dx
rðxÞ ¼ rðxÞ

2

d
dx qðxÞ
qðxÞ cos2ðhðxÞÞ �

d
dx pðxÞ
pðxÞ sin2ðhðxÞÞ

� �
ð79Þ
and
d

dx
hðxÞ ¼ �

ffiffiffiffiffiffiffiffiffi
qðxÞ
pðxÞ

s
�

d
dx qðxÞ
qðxÞ þ

d
dx pðxÞ
pðxÞ

� �
sinð2hðxÞÞ

4
ð80Þ
for any x 2 ða; bÞ.
Moreover, if h is strictly decreasing as a function of x, then x and r are parameterizable as functions of h, with
dx
dh
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qðxðhÞÞ
pðxðhÞÞ

s
þ

d
dx qðxðhÞÞ
qðxðhÞÞ þ

d
dx pðxðhÞÞ
pðxðhÞÞ

� �
sinð2hÞ

4

 !�1

ð81Þ
and
dr
dh
¼ r

2

d
dx pðxðhÞÞ
pðxðhÞÞ sin2ðhÞ �

d
dx qðxðhÞÞ
qðxðhÞÞ cos2ðhÞ

� �

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qðxðhÞÞ
pðxðhÞÞ

s
þ

d
dx qðxðhÞÞ
qðxðhÞÞ þ

d
dx pðxðhÞÞ
pðxðhÞÞ

� �
sinð2hÞ

4

 !�1

: ð82Þ
Remark 2.19. As is well known, the variables r in (76) and h in (77) are polar coordinates in the (phase) plane
having

ffiffiffi
q
p

f as the abscissa (‘‘x-coordinate”) and
ffiffiffi
p
p d

dx f as the ordinate (‘‘y-coordinate”). Please note that (80)
and (81) do not involve r.
3. Description of the algorithms

In this section, we describe the algorithms of the present paper.
We describe all processing as it pertains to even or odd functions. To process a function h defined on (�1,1)

which is neither even nor odd, we first separate h into its even and odd parts f and g, defined via the formulae
f ðxÞ ¼ hðxÞ þ hð�xÞ
2

ð83Þ
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and
gðxÞ ¼ hðxÞ � hð�xÞ
2

: ð84Þ
All subsequent processing then concerns f or g, each of which is uniquely defined by its values on ð0; 1Þ. Com-
bining (83) and (84) yields that
h ¼ f þ g: ð85Þ

In the present section, we assume that f has the form
f ðxÞ ¼
Xn�1

k¼0

bkP m
mþ2kðxÞ ð86Þ
for any x 2 ð�1; 1Þ, where m and n are nonnegative integers with n > 0, and b is a real n� 1 column vector.
Combining (86) and (5) yields that f is a linear combination of even functions, and hence f ð�xÞ ¼ f ðxÞ for any
x 2 ð�1; 1Þ. Similarly, we assume that g has the form
gðyÞ ¼
Xn�1

k¼0

mkP m
mþ2kþ1ðyÞ ð87Þ
for any y 2 ð�1; 1Þ, where again m and n are nonnegative integers with n > 0, and m is a real n� 1 column
vector. Combining (87) and (5) yields that g is a linear combination of odd functions, and hence
gð�yÞ ¼ �gðyÞ for any y 2 ð�1; 1Þ.

Section 3.1 constructs the underlying algorithms which Section 3.2 uses to compute fast associated Legen-
dre transforms (thus allowing us to compute fast spherical harmonic transforms, as elaborated in Section 1).
Section 3.3 discusses certain auxiliary precomputations needed by the algorithms of Section 3.2.

3.1. Fast analysis and synthesis of linear combinations of normalized associated Legendre functions

Suppose that m and n are nonnegative integers with n > 0, and a and b are real n� 1 column vectors, such
that a has the entry
aj ¼ f ðxjÞ ¼
Xn�1

k¼0

bkP m
mþ2kðxjÞ ð88Þ
for j ¼ 0; 1; . . . ; n� 2; n� 1, where x0; x1; . . . ; xn�2; xn�1 are the positive zeros of P m
mþ2n from (27), and f is de-

fined in (86). This subsection constructs algorithms which compute a in (88) rapidly given b, and, vice versa,
compute b rapidly given a.

According to (56) and (57),
a ¼ AU Tb ð89Þ

and
b ¼ U A�1a; ð90Þ

where U is defined in (45), A is defined in (49), and AU Tb and U A�1a are matrix–matrix–vector products.

Since A defined in (49) is diagonal, we can apply A and A�1 for a cost proportional to n to an arbitrary
real n� 1 vector. According to (51), U in (89) and (90) is a matrix of normalized eigenvectors of the self-
adjoint tridiagonal matrix S defined in (43), so we can apply U and UT for a cost proportional to n lnðnÞ to
an arbitrary real n� 1 vector using items 2 and 3 of Section 2.2. Thus, we can use (89) to compute a in (88)
for a cost proportional to n lnðnÞ given b, and, vice versa, use (90) to compute b for a cost proportional to
n lnðnÞ given a.

Via similar procedures, we can compute l in (55) for a cost proportional to n lnðnÞ given m, and, vice versa,
compute m for a cost proportional to n lnðnÞ given l.
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3.2. Fast interpolation of linear combinations of normalized associated Legendre functions

Given nonnegative integers m and n with n > 0, the vector a defined in (88) provides the values of a function
f at the positive zeros x0; x1; . . . ; xn�2; xn�1 of P m

mþ2n, where f is defined in (86). Section 3.1 provides an algorithm
for computing a rapidly. To compute the inverse spherical harmonic transform, however, we need to calculate
the values of f at the positive zeros z0; z1; . . . ; zl�2; zl�1 of P 0

2l from (31) (or, equivalently, from (7) and (12)),
where l is an integer such that mþ 2n 6 2l. The present subsection provides efficient schemes for performing
this task, in addition to related tasks needed for computing the forward spherical harmonic transform, given
the output of the algorithms of Section 3.1.

We can interpolate from the values of f at x0; x1; . . . ; xn�2; xn�1, obtained via the algorithm of Section 3.1, to
the values of f at z0; z1; . . . ; zl�2; zl�1 by means of (65), that is,
f ðzjÞ ¼ cmþ2n�2P m
mþ2nðzjÞ

Xn�1

k¼0

1

z2
j � x2

k

qkP m
mþ2n�2ðxkÞf ðxkÞ ð91Þ
for j ¼ 0; 1; . . . ; l� 2; l� 1, where cmþ2n�2 is defined in (39), and q0; q1; . . . ; qn�2;qn�1 are defined in (32).
Similarly, we can interpolate from the values of f at z0; z1; . . . ; zl�2; zl�1 to the values of f at

x0; x1; . . . ; xn�2; xn�1 by means of (71), that is,
f ðxjÞ ¼ cmþ2n�2P m
mþ2n�2ðxjÞ

Xl�1

k¼0

1

z2
k � x2

j
wkP m

mþ2nðzkÞf ðzkÞ ð92Þ
for j ¼ 0; 1; . . . ; n� 2; n� 1, where cmþ2n�2 is defined in (39), and w0;w1; . . . ;wl�2;wl�1 are defined in (37).
Using the fast multipole method summarized in Section 2.1 in conjunction with (91), we can compute for a

cost proportional to lþ n the values of f at z0; z1; . . . ; zl�2; zl�1 from the values of f at x0; x1; . . . ; xn�2; xn�1 (much
like in [10,25]). Similarly, using the fast multipole method in conjunction with (92), we can compute for a cost
proportional to lþ n the values of f at x0; x1; . . . ; xn�2; xn�1 from the values of f at z0; z1; . . . ; zl�2; zl�1.

Via analogous procedures, we can interpolate for a cost proportional to lþ n between the values of a func-
tion g at z0; z1; . . . ; zl�2; zl�1 and the values of g at the positive zeros y0; y1; . . . ; yn�2; yn�1 of P m

mþ2nþ1 from (29),
where g is defined in (87).

3.3. Auxiliary precomputations

In order to use (91) and (92), we have to precompute the positive zeros x0; x1; . . . ; xn�2; xn�1 of P m
mþ2n, the

positive zeros z0; z1; . . . ; zl�2; zl�1 of P 0
2l, the values of P m

mþ2n�2 at x0; x1; . . . ; xn�2, xn�1, the values of P m
mþ2n at

z0; z1; . . . ; zl�2; zl�1, the numbers q0; q1; . . . ; qn�2; qn�1 defined in (32), and the numbers w0;w1; . . . ;wl�2;wl�1

defined in (37). This subsection describes algorithms which perform these precomputations.
To find the positive zeros x0; x1; . . . ; xn�2; xn�1 of P m

mþ2n, we integrate the ordinary differential equation
(ODE) in formula (81) via an explicit predictor–corrector method like that in [4], thus obtaining the zeros
of P m

mþ2n when (78) is satisfied. In (81), we take pðxÞ ¼ 1� x2 and qðxÞ ¼ ðmþ 2nÞðmþ 2nþ 1Þ � m2

1�x2, in accor-
dance with the combination of (25) and (75), with f ðxÞ ¼ P m

mþ2nðxÞ.
To find the numbers q0; q1; . . . ; qn�2; qn�1 defined in (32), we calculate r defined in (76) by integrating the

ODE (82) (together with the ODE (81)) via an explicit predictor–corrector method like that in [4]. We then
obtain q0; q1; . . . ; qn�2; qn�1 via the formula
qk ¼
2ð2mþ 4nþ 1Þ
ðrðxkÞÞ2

ð93Þ
for k ¼ 0; 1; . . . ; n� 2; n� 1, which follows from (32), (76), and (27), with f ðxÞ ¼ P m
mþ2nðxÞ. In (76), (81), and

(82), we again take pðxÞ ¼ 1� x2 and qðxÞ ¼ ðmþ 2nÞðmþ 2nþ 1Þ � m2

1�x2, in accordance with the combination
of (25) and (75), with f ðxÞ ¼ P m

mþ2nðxÞ.
Via similar procedures, we can compute the positive zeros z0; z1; . . . ; zl�2; zl�1 of P 0

2l and the numbers
w0;w1; . . . ;wl�2;wl�1 defined in (37). We can compute the values of P m

mþ2n�2 at x0; x1; . . . ; xn�2; xn�1 and the
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values of P m
mþ2n at z0; z1; . . . ; zl�2; zl�1 by integrating ODEs of the form (75) together with ODEs of the form

(81), again via an explicit predictor–corrector method like that in [4].
We can compute similarly the positive zeros y0; y1; . . . ; yn�2; yn�1 of P m

mþ2nþ1, as well as the other numbers
needed to interpolate functions of the form (87).

Since we use an explicit predictor–corrector method like that in [4], we find that we can perform all com-
putations needed by the algorithm of the present subsection for a cost proportional to lþ n. However, we
found it expedient to perform the precomputations in extended-precision arithmetic, in order to compensate
for the loss of a couple of digits relative to the machine precision.

Remark 3.1. We used the ODE integration scheme of [4] primarily for convenience; other highly accurate
integration schemes would probably suffice.
4. Numerical results

In this section, we describe the results of several numerical tests of the algorithms of the present paper.
Tables 1–3 report on the analysis and synthesis schemes described in Section 3.1, while Tables 4–6 report on

the interpolation schemes described in Section 3.2. Computing the forward or inverse spherical harmonic
transform requires the schemes of both subsections, as well as fast discrete sine and cosine transforms (see
Table 1
Times in seconds and relative errors for synthesis of odd degrees

n m tfast tdirect
tdirect

tfast
tprecomps: er:m:s:

512 512 .81E�03 .97E�03 1.2 .36E+02 .18E�12
1024 1024 .24E�02 .37E�02 1.5 .19E+03 .21E�11
2048 2048 .65E�02 .14E�01 2.2 .77E+03 .26E�11
4096 4096 .16E�01 .56E�01 3.5 .34E+04 .52E�11
8192 8192 .40E�01 .27E�00 6.8 .12E+05 .39E�10

16384 16384 .93E�01 (.11E+01) 12 .59E+05 .19E�10
32768 32768 .21E�00 (.43E+01) 20 .20E+06 .46E�10

Table 2
Times in seconds and relative errors for synthesis of even degrees

n m tfast tdirect
tdirect

tfast
tprecomps: er:m:s:

512 0 .82E�03 .97E�03 1.2 .33E+02 .14E�11
1024 0 .25E�02 .37E�02 1.5 .15E+03 .37E�11
2048 0 .66E�02 .14E�01 2.2 .65E+03 .48E�11
4096 0 .18E�01 .60E�01 3.5 .27E+04 .11E�10
8192 0 .40E�01 .27E�00 6.8 .13E+05 .28E�10

16384 0 .10E�00 (.11E+01) 11 .44E+05 .42E�10
32768 0 .22E�00 (.43E+01) 20 .19E+06 .81E�10

Table 3
Times in seconds and relative errors for analysis of odd degrees

n m tfast tdirect
tdirect

tfast
tprecomps: er:m:s:

512 512 .82E�03 .93E�03 1.1 .37E+02 .12E�13
1024 1024 .25E�02 .36E�02 1.4 .17E+03 .51E�13
2048 2048 .65E�02 .14E�01 2.2 .83E+03 .67E�13
4096 4096 .16E�01 .56E�01 3.5 .34E+04 .68E�13
8192 8192 .40E�01 .27E�00 6.8 .12E+05 .15E�12

16384 16384 .93E�01 (.11E+01) 12 .52E+05 .27E�12
32768 32768 .24E�00 (.43E+01) 18 .22E+06 .18E�12



Table 4
Times in seconds and relative errors for interpolation from zeros of P m

mþ2n to zeros of P 0
mþ2n

n m tfast tdirect
tdirect

tfast
tprecomps: er:m:s:

512 512 .89E�03 .14E�02 1.6 .20E+03 .60E�13
1024 1024 .19E�02 .58E�02 3.1 .39E+03 .66E�13
2048 2048 .37E�02 .24E�01 6.5 .79E+03 .94E�13
4096 4096 .74E�02 .93E�01 13 .16E+04 .17E�12
8192 8192 .15E�01 .42E�00 28 .32E+04 .31E�12

16384 16384 .30E�01 (.17E+01) 57 .64E+04 .60E�12
32768 32768 .60E�01 (.67E+01) 112 .13E+05 .12E�11

Table 5
Times in seconds and relative errors for interpolation from zeros of P 0

2nþ1 to zeros of P 0
2n

n m tfast tdirect
tdirect

tfast
tprecomps: er:m:s:

512 0 .66E�03 .88E�03 1.3 .17E+03 .42E�12
1024 0 .13E�02 .36E�02 2.8 .33E+03 .34E�11
2048 0 .27E�02 .15E�01 5.6 .66E+03 .63E�11
4096 0 .54E�02 .62E�01 11 .13E+04 .14E�10
8192 0 .11E�01 .27E�00 25 .27E+04 .18E�10

16384 0 .22E�01 (.11E+01) 50 .52E+04 .31E�10
32768 0 .44E�01 (.43E+01) 98 .11E+05 .90E�10

Table 6
Times in seconds and relative errors for interpolation from zeros of P 0

mþ2n to zeros of P m
mþ2n

n m tfast tdirect
tdirect

tfast
tprecomps: er:m:s:

512 512 .81E�03 .14E�02 1.7 .20E+03 .45E�13
1024 1024 .15E�02 .54E�02 3.6 .39E+03 .55E�13
2048 2048 .32E�02 .22E�01 6.9 .79E+03 .78E�13
4096 4096 .65E�02 .92E�01 14 .16E+04 .14E�12
8192 8192 .15E�01 .41E�00 27 .32E+04 .28E�12

16384 16384 .35E�01 (.16E+01) 46 .64E+04 .55E�12
32768 32768 .83E�01 (.66E+01) 80 .13E+05 .11E�11
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Sections 1 and 3 for details). In each table, n is the size of the transform, m is the order of the normalized
associated Legendre functions used in the transform, tfast is the time in seconds required to apply the algorithm
of the present article once to calculate the application of a matrix to one input vector, tprecomps: is the time in
seconds required to precompute all data needed in order to execute the algorithm of the present paper, and
er:m:s: is the root-mean-square of the difference of the output calculated by the algorithm of the present article
from the directly calculated output, divided by the root-mean-square of the input. We should note that we
made no attempt to optimize the precomputations.

In each table, tdirect is the time in seconds required to apply a dense matrix to a vector via the conventional
matrix–vector multiplication algorithm. We estimated the last two entries for tdirect by multiplying the third-to-
last entry in each table by 4 and 16, since the large matrices required to generate those entries exceeded the
memory addressable by our (32-bit addressing) compiler. We indicate that these entries are estimates by
enclosing them in parentheses. We individually describe the dimensionality of the matrix associated with each
table in the description for each table below. Please note that the Lahey–Fujitsu compiler we used optimizes
matrix–vector applications to make them particularly efficient (50–100% faster than matrix–vector applica-
tions effected using the f2c- and gcc-based fort77 compiler under its highest optimization setting, �O3).

Table 1 lists the results of computing from real numbers m0; m1; . . . ; mn�2; mn�1 the real numbers
l0; l1; . . . ; ln�2; ln�1 defined via the formula
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lj ¼
Xn�1

k¼0

mkP m
mþ2kþ1ðyjÞ ð94Þ
for j ¼ 0; 1; . . . ; n� 2; n� 1, where y0; y1; . . . ; yn�2; yn�1 are the positive zeros of P m
mþ2nþ1 from (29). Table 1 tests

the transform with each of the numbers m0; m1; . . . ; mn�2; mn�1 being distributed uniformly on ð�1; 1Þ, as obtained
from a pseudorandom number generator. In Table 1, tdirect is the time in seconds required to apply a dense real
n� n matrix to a real n� 1 vector.

Table 2 lists the results of computing from real numbers b0; b1; . . . ; bn�2; bn�1 the real numbers
a0; a1; . . . ; an�2; an�1 defined via the formula
aj ¼
Xn�1

k¼0

bkP 0
0þ2kðxjÞ ð95Þ
for j ¼ 0; 1; . . . ; n� 2; n� 1, where x0; x1; . . . ; xn�2; xn�1 are the positive zeros of P 0
0þ2n from (27). Table 2 tests

the transform with each of the numbers b0; b1; . . . ; bn�2; bn�1 being distributed uniformly on (�1,1), as ob-
tained from a pseudorandom number generator. In Table 2, tdirect is the time in seconds required to apply a
dense real n� n matrix to a real n� 1 vector.

Table 3 lists the results of computing from real numbers l0; l1; . . . ; ln�2; ln�1 the real numbers
m0; m1; . . . ; mn�2; mn�1 satisfying
lj ¼
Xn�1

k¼0

mkP m
mþ2kþ1ðyjÞ ð96Þ
for j ¼ 0; 1; . . . ; n� 2; n� 1, where y0; y1; . . . ; yn�2; yn�1 are the positive zeros of P m
mþ2nþ1 from (29). Table 3 tests

the transform with each of the numbers m0; m1; . . . ; mn�2; mn�1 being distributed uniformly on ð�1; 1Þ, as obtained
from a pseudorandom number generator. We calculated the input values for l0; l1; . . . ; ln�2; ln�1 using (96),
calculating P m

mþ2kþ1ðyjÞ for j; k ¼ 0; 1; . . . ; n� 2; n� 1 via the recurrence relations (41) and (42) in extended-
precision arithmetic (to compensate for the apparently mildly unstable recursion on the degrees of the normal-
ized associated Legendre functions). In Table 3, tdirect is the time in seconds required to apply a dense real n� n
matrix to a real n� 1 vector.

Table 4 lists the results of computing from the values of a function f at the positive zeros x0; x1; . . . ; xn�2; xn�1

of P m
mþ2n from (27) the values of f at the positive zeros z0; z1; . . . ; zm=2þn�2; zm=2þn�1 of P 0

mþ2n from (31), where f is
the function defined on ð�1; 1Þ via the formula
f ðxÞ ¼
Xn�1

k¼0

bkP m
mþ2kðxÞ ð97Þ
for some real numbers b0; b1; . . . ; bn�2; bn�1. Table 4 tests the transform with each of the numbers
b0; b1; . . . ; bn�2; bn�1 being distributed uniformly on ð�1; 1Þ, as obtained from a pseudorandom number gen-
erator. In Table 4, tdirect is the time in seconds required to apply a dense real ðm

2
þ nÞ � n matrix to a real

n� 1 vector.
Table 5 lists the results of computing from the values of a function g at the positive zeros

y0; y1; . . . ; yn�2; yn�1 of P 0
0þ2nþ1 from (29) the values of g at the positive zeros z0; z1; . . . ; zn�2; zn�1 of P 0

2n from
(31), where g is the function defined on ð�1; 1Þ via the formula
gðyÞ ¼
Xn�1

k¼0

mkP 0
0þ2kþ1ðyÞ ð98Þ
for some real numbers m0; m1; . . . ; mn�2; mn�1. Table 5 tests the transform with each of the numbers
m0; m1; . . . ; mn�2; mn�1 being distributed uniformly on (�1,1), as obtained from a pseudorandom number gener-
ator. In Table 5, tdirect is the time in seconds required to apply a dense real n� n matrix to a real n� 1 vector.

Table 6 lists the results of computing from the values of a function f at the positive zeros
z0; z1; . . . ; zm=2þn�2; zm=2þn�1 of P 0

mþ2n from (31) the values of f at the positive zeros x0; x1; . . . ; xn�2; xn�1 of
P m

mþ2n from (27), where f is the function defined on (�1,1) via the formula
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f ðxÞ ¼
Xn�1

k¼0

bkP m
mþ2kðxÞ ð99Þ
for some real numbers b0; b1; . . . ; bn�2; bn�1. Table 6 tests the transform with each of the numbers
b0; b1; . . . ; bn�2; bn�1 being distributed uniformly on (�1,1), as obtained from a pseudorandom number gener-
ator. In Table 6, tdirect is the time in seconds required to apply a dense real n� ðm

2
þ nÞ matrix to a real

ðm
2
þ nÞ � 1 vector.
We wrote all code in Fortran 77, compiling it using the Lahey–Fujitsu Linux Express v6.2 compiler, with

optimization flag - -o2 enabled. We ran all of the examples on a single-core 2.8 GHz Pentium Xeon with 1 MB
of L2 cache and 2 GB of RAM. We performed all precomputations in quadruple-precision arithmetic, as
implemented in software by the Lahey–Fujitsu compiler. Aside from the precomputations, our code is com-
pliant with the IEEE double-precision standard (so that the mantissas of variables have approximately one bit
of precision less than 16 digits, yielding a relative precision of about .2E�15). For the fast multipole method
(FMM) needed in the algorithms of Sections 2.2 and 3.1, we used the FMM of [12]. For the FMM needed in
the algorithm of Section 3.2, we used the ‘‘simple exponential-expansion FMM” algorithm described in Sec-
tion 4 of [26].

Remark 4.1. The timings reported in Tables 1–6, as well as in our further experiments, appear to be consistent
with the expected costs of the algorithms. In Tables 1–3, tfast takes on values that are consistent with its
expected values of a constant times n lnðnÞ, for sufficiently large n. In Tables 4–6, tfast takes on values that are
consistent with its expected values of a constant times n, for sufficiently large n. In Tables 1–6, tdirect takes on
values that are consistent with its expected values of a constant times n2. In Tables 4–6, tprecomps: takes on
values that are consistent with its expected values of a constant times n, for sufficiently large n. In Tables 1–3,
tprecomps: takes on values that appear to scale as a constant times n2. We were expecting tprecomps: to scale as a
constant times n2 in Tables 1–3: to simplify our implementation, we used precomputations for the algorithm
summarized in Section 2.2 that should scale as a constant times n2. In principle, the methods of [7] and the last
lemma of Section 2.2 in [24] can give rise to precomputations that would scale as a constant times n lnðnÞ. We
made no attempt to optimize the precomputations.

Remark 4.2. When n = 32,768, the algorithm of the present paper appears to be around 15 times faster than
the direct algorithm. The method of the present article would seem to be preferable to the algorithm of [16]
whenever the method of the present paper is available, as this method is much more efficient, particularly at
smaller problem sizes. However, while the algorithm of the present article does generalize to certain classes of
special functions not treated by [16] (see, for example [24]), the algorithm of the present article does not gen-
eralize directly to spheroidal wave functions (which are amenable to the method of [16]).

Notwithstanding this, it is possible that the algorithms of the present paper will generalize in a non-obvious
manner. For instance, combining a fast associated Laguerre transform algorithm with the fact that the
eigenfunctions of the Fourier–Bessel transform are associated Laguerre functions would yield a fast Fourier–
Bessel transform algorithm, as pointed out to us by Michael O’Neil and Vladimir Rokhlin during personal
communication in early 2007. (Please note here that the Fourier–Bessel transform is also known as the Hankel
transform.) As described in [24], the algorithms of the present paper do indeed appear to generalize to
associated Laguerre functions.
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